Nuclear Disasters Disasters
The Windscale fire of 10 October 1957 was the worst nuclear accident in Great Britain's history, ranked in severity at level 5 out of a possible 7 on the International Nuclear Event Scale. The fire took place in Unit 1 of the two-pile Windscale facility on the northwest coast of England in Cumberland (now Sellafield, Cumbria). The two graphite-moderated reactors, referred to at the time as "piles", had been built as part of the British post-war atomic bomb project. Windscale Pile No. 1 was operational in October 1950 followed by Pile No. 2 in June 1951.
The fire burned for three days and there was a release of radioactive contamination that spread across the UK and the rest of Europe. Of particular concern at the time was the radioactive isotope iodine-131, which may lead to cancer of the thyroid, and it has been estimated that the incident caused 240 additional cancer cases. No one was evacuated from the surrounding area, but there was a worry that milk might be dangerously contaminated. Milk from about 500 square kilometres (190 sq mi) of nearby countryside was diluted and destroyed for about a month. A 2010 study of workers involved in the cleanup of the accident found no significant long term health effects from their involvement.
The December 1938 discovery of nuclear fission by Otto Hahn and Fritz Strassmann—and its explanation and naming by Lise Meitner and Otto Frisch—raised the possibility that an extremely powerful atomic bomb could be created. During the Second World War, Frisch and Rudolf Peierls at the University of Birmingham calculated the critical mass of a metallic sphere of pure uranium-235, and found that as little as 1 to 10 kilograms (2.2 to 22.0 lb) might explode with the power of thousands of tons of dynamite. In response, the British government initiated an atomic bomb project, codenamed Tube Alloys. The August 1943 Quebec Agreement merged Tube Alloys with the American Manhattan Project. As overall head of the British contribution to the Manhattan Project, James Chadwick forged a close and successful partnership with the Americans, and ensured that British participation was complete and wholehearted.
After the war ended, the Special Relationship between Britain and the United States "became very much less special". The British government had trusted that America would continue to share nuclear technology, which it considered a joint discovery, but little information was exchanged immediately after the war, and the Atomic Energy Act of 1946 (McMahon Act) officially ended technical cooperation. Its control of "restricted data" prevented the United States' allies from receiving any information. The British government saw this as a resurgence of United States isolationism akin to that which had occurred after the First World War. This raised the possibility that Britain might have to fight an aggressor alone. It also feared that Britain might lose its great power status, and therefore its influence in world affairs. The Prime Minister of the United Kingdom, Clement Attlee, set up a cabinet sub-committee, the Gen 75 Committee (known informally as the "Atomic Bomb Committee"), on 10 August 1945 to examine the feasibility of a renewed nuclear weapons programme. More details
The fire burned for three days and there was a release of radioactive contamination that spread across the UK and the rest of Europe. Of particular concern at the time was the radioactive isotope iodine-131, which may lead to cancer of the thyroid, and it has been estimated that the incident caused 240 additional cancer cases. No one was evacuated from the surrounding area, but there was a worry that milk might be dangerously contaminated. Milk from about 500 square kilometres (190 sq mi) of nearby countryside was diluted and destroyed for about a month. A 2010 study of workers involved in the cleanup of the accident found no significant long term health effects from their involvement.
The December 1938 discovery of nuclear fission by Otto Hahn and Fritz Strassmann—and its explanation and naming by Lise Meitner and Otto Frisch—raised the possibility that an extremely powerful atomic bomb could be created. During the Second World War, Frisch and Rudolf Peierls at the University of Birmingham calculated the critical mass of a metallic sphere of pure uranium-235, and found that as little as 1 to 10 kilograms (2.2 to 22.0 lb) might explode with the power of thousands of tons of dynamite. In response, the British government initiated an atomic bomb project, codenamed Tube Alloys. The August 1943 Quebec Agreement merged Tube Alloys with the American Manhattan Project. As overall head of the British contribution to the Manhattan Project, James Chadwick forged a close and successful partnership with the Americans, and ensured that British participation was complete and wholehearted.