Energy Oil and Energy
A Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) is an electrical generator that uses an array of thermocouples to convert the heat released by the decay of a suitable radioactive material into electricity by the Seebeck effect. This generator has no moving parts.
RTGs have been used as power sources in satellites, space probes, and unmanned remote facilities such as a series of lighthouses built by the former Soviet Union inside the Arctic Circle. RTGs are usually the most desirable power source for unmaintained situations that need a few hundred watts (or less) of power for durations too long for fuel cells, batteries, or generators to provide economically, and in places where solar cells are not practical. Safe use of RTGs requires containment of the radioisotopes long after the productive life of the unit.
Curiosity Mars rover is powered by a radioisotope thermoelectric generator (RTG), like the successful Viking 1 and Viking 2 Mars landers in 1976.
The MMRTG is powered by 8 Pu-238 dioxide general-purpose heat source (GPHS) modules, provided by the Department of Energy. Initially, these eight GPHS modules generate about 2 kW thermal power.
The MMRTG is designed to produce 125 W electrical power at the start of mission, falling to about 100 W after 14 years. With a mass of 45 kg the MMRTG provides about 2.8 W/kg of electrical power at beginning of life.
The MMRTG design is capable of operating both in the vacuum of space and in planetary atmospheres, such as on the surface of Mars. Design goals for the MMRTG included ensuring a high degree of safety, optimizing power levels over a minimum lifetime of 14 years, and minimizing weight. More details
RTGs have been used as power sources in satellites, space probes, and unmanned remote facilities such as a series of lighthouses built by the former Soviet Union inside the Arctic Circle. RTGs are usually the most desirable power source for unmaintained situations that need a few hundred watts (or less) of power for durations too long for fuel cells, batteries, or generators to provide economically, and in places where solar cells are not practical. Safe use of RTGs requires containment of the radioisotopes long after the productive life of the unit.
Curiosity Mars rover is powered by a radioisotope thermoelectric generator (RTG), like the successful Viking 1 and Viking 2 Mars landers in 1976.
The MMRTG is powered by 8 Pu-238 dioxide general-purpose heat source (GPHS) modules, provided by the Department of Energy. Initially, these eight GPHS modules generate about 2 kW thermal power.
The MMRTG is designed to produce 125 W electrical power at the start of mission, falling to about 100 W after 14 years. With a mass of 45 kg the MMRTG provides about 2.8 W/kg of electrical power at beginning of life.
The MMRTG design is capable of operating both in the vacuum of space and in planetary atmospheres, such as on the surface of Mars. Design goals for the MMRTG included ensuring a high degree of safety, optimizing power levels over a minimum lifetime of 14 years, and minimizing weight. More details