Iceland Eruption Disaster

Natural Disasters Disasters 








The 2010 eruptions of Eyjafjallajökull were volcanic events at Eyjafjallajökull in Iceland which, although relatively small for volcanic eruptions, caused enormous disruption to air travel across western and northern Europe over an initial period of six days in April 2010. Additional localised disruption continued into May 2010. The eruption was declared officially over in October 2010, when snow on the glacier did not melt. From 14–20 April, ash from the volcanic eruption covered large areas of Northern Europe. About 20 countries closed their airspace to commercial jet traffic and it affected approximately 10 million travellers.

1783 Iceland Eruption DisasterSeismic activity started at the end of 2009 and gradually increased in intensity until on 20 March 2010, a small eruption began, rated as a 1 on the volcanic explosivity index.

Beginning on 14 April 2010, the eruption entered a second phase and created an ash cloud that led to the closure of most of the European IFR airspace from 15 until 20 April 2010. Consequently, a very high proportion of flights within, to, and from Europe were cancelled, creating the highest level of air travel disruption since the Second World War. The second phase resulted in an estimated 250 million cubic metres (330,000,000 cu yd) (0.25 km3) of ejected tephra and an ash plume that rose to a height around 9 km (5.6 mi), which rates the explosive power of the eruption as a 4 on the volcanic explosivity index. By 21 May 2010, the second eruption phase had subsided to the point that no further lava or ash was being produced.

By the evening of 6 June 2010, a small, new crater had opened up on the west side of the main crater. Explosive activity from this new crater was observed with emission of small quantities of ash. Seismic data showed that the frequency and intensity of earth tremors still exceeded the levels observed before the eruption, therefore scientists at the Icelandic Meteorological Office (IMO) and the Institute of Earth Sciences, University of Iceland (IES) continued to monitor the volcano. More details

Laki or Lakagígar (Craters of Laki) is a volcanic fissure in the western part of Vatnajökull National Park, Iceland, not far from the volcanic fissure of Eldgjá and the small village of Kirkjubæjarklaustur. The fissure is properly referred to as Lakagígar, while Laki is a mountain that the fissure bisects. Lakagígar is part of a volcanic system centered on the volcano Grímsvötn and including the volcano Thordarhyrna. It lies between the glaciers of Mýrdalsjökull and Vatnajökull, in an area of fissures that run in a southwest to northeast direction.


The system erupted violently over an eight-month period between June 1783 and February 1784 from the Laki fissure and the adjoining volcano Grímsvötn, pouring out an estimated 42 billion tons or 14 km3 (3.4 cu mi) of basalt lava and clouds of poisonous hydrofluoric acid and sulfur dioxide compounds that contaminated the soil, leading to the death of over 50% of Iceland's livestock population, and the destruction of the vast majority of all crops. This led to a famine which then killed approximately 25% of the island's human population. The lava flows also destroyed 20 villages.

The Laki eruption and its aftermath caused a drop in global temperatures, as 120 million tons of sulfur dioxide was spewed into the Northern Hemisphere. This caused crop failures in Europe and may have caused droughts in North Africa and India. More details